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Abstract—We present two real-time hidden Markov model-based
systems for recognizing sentence-level continuous American Sign
Language (ASL) using a single camera to track the user’s unadorned
hands. The first system observes the user from a desk mounted
camera and achieves 92 percent word accuracy. The second system
mounts the camera in a cap worn by the user and achieves 98 percent
accuracy (97 percent with an unrestricted grammar). Both experiments
use a 40-word lexicon.

Index Terms—Gesture recognition, hidden Markov models, wearable
computers, sign language, motion and pattern analysis.
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1 INTRODUCTION

WHILE there are many different types of gestures, the most struc-
tured sets belong to the sign languages. In sign language, each
gesture already has assigned meaning, and strong rules of context
and grammar may be applied to make recognition tractable.
American Sign Language (ASL) is the language of choice for most
deaf in the United States. ASL uses approximately 6,000 gestures
for common words and finger spelling for communicating obscure
words or proper nouns. However, the majority of signing is with
full words, allowing signed conversations to proceed at about the
pace of spoken conversation. ASL’s grammar allows more flexibil-
ity in word order than English and sometimes uses redundancy for
emphasis. Another variant, Signed Exact English (SEE), has more
in common with spoken English but is not as widespread in
America.

Conversants in ASL may describe a person, place, or thing and
then point to a place in space to store that object temporarily for
later reference [14]. For the purposes of this experiment, this aspect
of ASL will be ignored. Furthermore, in ASL the eyebrows are
raised for a question, relaxed for a statement, and furrowed for a
directive. While we have also built systems that track facial fea-
tures [4], [9], this source of information will not be used to aid rec-
ognition in the task addressed here.

1.1 Related Work
Following a similar path to early speech recognition, many previ-
ous attempts at machine sign language recognition concentrate on
isolated signs or fingerspelling. Space does not permit a thorough
review [19], but, in general, most attempts either relied on instru-
mented gloves or a desktop-based camera system and used a form
of template matching or neural nets for recognition. However,
current extensible systems are beginning to employ hidden
Markov models (HMMs).

Hidden Markov models are used prominently and success-
fully in speech recognition and, more recently, in handwriting

recognition. Consequently, they seem ideal for visual recognition
of complex, structured hand gestures as are found in sign lan-
guages. Explicit segmentation on the word level is not necessary
for either training or recognition. Language and context models
can be applied on several different levels, and much related devel-
opment of this technology has been done by the speech recogni-
tion community [6].

When the authors first reported this project in 1995 [15], [18],
very few uses of HMMs were found in the computer vision litera-
ture [22], [13]. At the time, continuous-density HMMs were begin-
ning to appear in the speech community; continuous-gesture rec-
ognition was scarce; gesture lexicons were very small; and auto-
matic training through Baum-Welch re-estimation was uncommon.
Results were not reported with the standard accuracy measures
accepted in the speech- and handwriting-recognition communities,
and training and testing databases were often identical or depend-
ent in some manner.

Since this time, HMM-based gesture recognizers for other
tasks have appeared in the literature [21], [2], and, last year, sev-
eral HMM-based continuous sign language systems were dem-
onstrated. In a submission to UIST’97, Liang and Ouhyoung’s
work in Taiwanese Sign Language [8] shows very encouraging
results with a glove-based recognizer. This HMM-based system
recognizes 51 postures, eight orientations, and eight motion
primitives. When combined, these constituents can form a lexi-
con of 250 words which can be continuously recognized in real-
time with 90.5 percent accuracy. At ICCV’98, Vogler and Metaxas
described a desk-based 3D camera system that achieves 89.9 per-
cent word accuracy on a 53 word lexicon [20]. Since the vision
process is computationally expensive in this implementation, an
electromagnetic tracker is used interchangeably with the three
mutually orthogonal calibrated cameras for collecting experi-
mental data.

1.2 The Task
In this paper, we describe two extensible systems which use one
color camera to track unadorned hands in real time and interpret
American Sign Language using hidden Markov models. The
tracking stage of the system does not attempt a fine description of
hand shape, instead concentrating on the evolution of the gesture
through time. Studies of human sign readers suggest that surpris-
ingly little hand detail is necessary for humans to interpret sign
language [10], [14]. In fact, in movies shot from the waist up of
isolated signs, Sperling et al. [14] show that the movies retain 85
percent of their full resolution intelligibility when subsampled to
24 ¥ 16 pixels! For this experiment, the tracking process produces
only a coarse description of hand shape, orientation, and trajectory.
The resulting information is input to a HMM for recognition of the
signed words.

While the scope of this work is not to create a user independ-
ent, full lexicon system for recognizing ASL, the system is extensi-
ble toward this goal. The “continuous” sign language recognition
of full sentences demonstrates the feasibility of recognizing com-
plicated series of gestures. In addition, the real-time recognition
techniques described here allow easier experimentation, demon-
strate the possibility of a commercial product in the future, and
simplify archival of test data. For this recognition system, sen-
tences of the form “personal pronoun, verb, noun, adjective, (the
same) personal pronoun” are to be recognized. This structure al-
lows a large variety of meaningful sentences to be generated using
randomly chosen words from each class as shown in Table 1. Six
personal pronouns, nine verbs, twenty nouns, and five adjectives
are included for a total lexicon of forty words. The words were
chosen by paging through Humphries et al. [7] and selecting those
words which would generate coherent sentences given the gram-
mar constraint. Words were not chosen based on distinctiveness or
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lack of detail in the finger positioning. Note that finger position
plays an important role in several of the signs (pack vs. car, food
vs. pill, red vs. mouse, etc.)

2 HIDDEN MARKOV MODELING

Due to space limitations, the reader is encouraged to refer to the
existing literature on HMM evaluation, estimation, and decoding
[1], [6], [11], [23]. A tutorial relating HMMs to sign language rec-
ognition is provided in the first author’s Master’s thesis [15].

The initial topology for an HMM can be determined by esti-
mating how many different states are involved in specifying a
sign. Fine tuning this topology can be performed empirically. In
this case, an initial topology of five states was considered sufficient
for the most complex sign. To handle less complicated signs, skip
transitions were specified which allowed the topology to emulate a
strictly three or four state HMM. While different topologies can be
specified per sign explicitly, the above method allows training to
adapt the HMM automatically without human intervention. How-
ever, after testing several different topologies, a four state HMM
with one skip transition was determined to be appropriate for this
task (Fig. 1).

3 FEATURE EXTRACTION AND HAND AMBIGUITY

Previous systems have shown that, given strong constraints on
viewing, relatively detailed models of the hands can be recovered
from video images [3], [12]. However, many of these constraints
conflict with recognizing ASL in a natural context, since they either
require simple, unchanging backgrounds (unlike clothing); do not
allow occlusion; require carefully labelled gloves; or are difficult to
run in real time.

In this project, we track the hands using a single camera in real-
time without the aid of gloves or markings. Only the natural color
of the hands is needed. For vision-based sign recognition, the two
possible mounting locations for the camera are in the position of
an observer of the signer or from the point of view of the signer
himself. These two views can be thought of as second-person and
first-person viewpoints, respectively.

Training for a second-person viewpoint is appropriate in the
rare instance when the translation system is to be worn by a hear-
ing person to translate the signs of a mute or deaf individual.
However, such a system is also appropriate when a signer wishes
to control or dictate to a desktop computer as is the case in the first

experiment. Fig. 2 demonstrates the viewpoint of the desk-based
experiment.

The first-person system observes the signer’s hands from much
the same viewpoint as the signer himself. Fig. 3 shows the place-
ment of the camera in the cap used in the second experiment and
demonstrates the resulting viewpoint. The camera was attached to
an SGI for development; however, current hardware allows for the
entire system to be unobtrusively embedded in the cap itself as a
wearable computer. A matchstick-sized camera such as the Elmo
QN401E can be embedded in front seam above the brim. The brim
can be made into a relatively good quality speaker by lining it with a
PVDF transducer (used in thin consumer-grade stereo speakers).
Finally a PC/104-based CPU, digitizer, and batteries can be placed at
the back of the head. See Starner et al. [17] and the MIT Wearable
Computing Site (http://wearables.www.media.mit.edu/projects/wearables/) for
more detailed information about wearable computing and related
technologies.

A wearable computer system provides the greatest utility for an
ASL to spoken English translator. It can be worn by the signer
whenever communication with a nonsigner might be necessary,
such as for business or on vacation. Providing the signer with a
self-contained and unobtrusive first-person view translation sys-
tem is more feasible than trying to provide second-person transla-
tion systems for everyone whom the signer might encounter dur-
ing the day.

For both systems, color NTSC composite video is captured and
analyzed at 320 ¥ 243 pixel resolution. This lower resolution avoids
video interlace effects. A Silicon Graphics 200MHz R4400 Indy
workstation maintains hand tracking at 10 frames per second, a
frame rate which Sperling et al. [14] found sufficient for human
recognition. To segment each hand initially, the algorithm scans

TABLE 1
ASL TEST LEXICON

part of speech vocabulary
pronoun I, you, he, we, you(pl), they
verb want, like, lose, dontwant, dontlike,

love, pack, hit, loan
noun box, car, book, table, paper, pants,

bicycle, bottle, can, wristwatch,
umbrella, coat, pencil, shoes, food,
magazine, fish, mouse, pill, bowl

adjective red, brown, black, gray, yellow

Fig. 1. The four-state HMM used for recognition.

Fig. 2. View from the desk-based tracking camera. Images are ana-
lyzed at 320 ¥ 240 resolution.

Fig. 3. The hat-mounted camera, pointed downward toward the hands,
and the corresponding view.
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the image until it finds a pixel of the appropriate color, determined
by an a priori model of skin color. Given this pixel as a seed, the
region is grown by checking the eight nearest neighbors for the
appropriate color. Each pixel checked is considered part of the
hand. This, in effect, performs a simple morphological dilation
upon the resultant image that helps to prevent edge and lighting
aberrations. The centroid is calculated as a by-product of the
growing step and is stored as the seed for the next frame. Since the
hands have the same skin tone, the labels “left hand” and “right
hand” are simply assigned to whichever blob is leftmost and
rightmost.

Note that an a priori model of skin color may not be appropri-
ate in some situations. For example, with a mobile system, lighting
can change the appearance of the hands drastically. However, the
image in Fig. 3 provides a clue to addressing this problem, at least
for the first-person view. The smudge on the bottom of the image
is actually the signer’s nose. Since the camera is mounted on a cap,
the nose always stays in the same place relative to the image. Thus,
the signer’s nose can be used as a calibration object for generating
a model of the hands’ skin color for tracking. While this calibration
system has been prototyped, it was not used in these experiments.

After extracting the hand blobs from the scene, second moment
analysis is performed on each blob. A sixteen-element feature
vector is constructed from each hand’s x and y position, change in
x and y between frames, area (in pixels), angle of axis of least iner-
tia (found by the first eigenvector of the blob) [5], length of this
eigenvector, and eccentricity of bounding ellipse.

When tracking skin tones, the above analysis helps to model
situations of hand ambiguity implicitly. When a hand occludes
either the other hand or the face (or the nose in the case of the
wearable version), color tracking alone cannot resolve the ambi-
guity. Since the face remains in the same area of the frame, its po-
sition can be determined and discounted. However, the hands
move rapidly and occlude each other often. When occlusion oc-
curs, the hands appear to the above system as a single blob of
larger than normal area with significantly different moments than
either of the two hands in the previous frame. In this implementa-
tion, each of the two hands is assigned the features of this single
blob whenever occlusion occurs. While not as informative as
tracking each hand separately, this method still retains a surprising
amount of discriminating information. The occlusion event itself is
implicitly modeled, and the combined position and moment in-
formation are retained. This method, combined with the time
context provided by hidden Markov models, is sufficient to distin-
guish between many different signs where hand occlusion occurs.

4 THE SECOND-PERSON VIEW: A DESK-BASED
RECOGNIZER

The first experimental situation explored was the second person
view: a desk-based recognizer. In this experiment, 500 sentences
were obtained, but 22 sentences were eliminated due to subject
error or outlier signs. In general, each sign is one to three sec-
onds long. No intentional pauses exist between signs within a
sentence, but the sentences themselves are distinct. For testing
purposes, 384 sentences were used for training, and 94 were re-
served for testing. The test sentences are not used in any portion
of the training process.

For training, the sentences are divided automatically in five
equal portions to provide an initial segmention into component
signs. Then, initial estimates for the means and variances of the
output probabilities are provided by iteratively using Viterbi
alignment on the training data and then recomputing the means
and variances by pooling the vectors in each segment. Entropic’s
Hidden Markov Model ToolKit (HTK) is used as a basis for this
step and all other HMM modeling and training tasks. The results

from the initial alignment program are fed into a Baum-Welch re-
estimator, whose estimates are, in turn, refined in embedded
training which ignores any initial segmentation. For recognition,
HTK’s Viterbi recognizer is used both with and without the part-
of-speech grammar based on the known form of the sentences.
Contexts are not used since they would require significantly more
data to train. However, a similar effect can be achieved with the
strong grammar in this data set. Recognition occurs five times
faster than real time.

Word recognition accuracy results are shown in Table 1; when
different, the percentage of words correctly recognized is shown in
parentheses next to the accuracy rates. Accuracy is calculated by

Acc
N D S I

N
=

- - -

where N is the total number of words in the test set, D is the num-
ber of deletions, S is the number of substitutions, and I is the num-
ber of insertions. Note that, since all errors are accounted against
the accuracy rate, it is possible to get large negative accuracies
(and corresponding error rates of over 100 percent). When using
the part-of-speech grammar (pronoun, verb, noun, adjective, pro-
noun), insertion and deletion errors are not possible since the
number and class of words allowed is known. Thus, all errors are
vocabulary substitutions when this grammar is used (and accuracy
is equivalent to percent correct). Assuming independence, random
chance would result in a percent correct of 13.9 percent, calculated
by averaging over the likelihood of each part-of-speech being cor-
rect. Without the grammar, the recognizer is allowed to match the
observation vectors with any number of the 40 vocabulary words
in any order. In fact, the number of words produced by the recog-
nizer can be up to the number of samples in the sentence! Thus,
deletion (D), insertion (I), and substitution (S) errors are possible in
the “unrestricted grammar” tests, and a comparison to random
chance becomes irrelevant. The absolute number of errors of each
type are listed in Table 2. Many of the insertion errors correspond
to signs with repetitive motion.

An additional “relative features” test is provided in the results.
For this test, absolute (x, y) position is removed from the feature
vector. This provides a sense of how the recognizer performs when
only relative features are available. Such may be the case in daily
use; the signer may not place himself in the same location each
time the system is used.

The 94.1 percent and 91.9 percent accuracies using the part-of-
speech grammar show that the HMM topologies are sound and
that the models generalize well. However, the subject’s variability
in body rotation and position is known to be a problem with this
data set. Thus, signs that are distinguished by the hands’ positions in
relation to the body were confused since the absolute positions of
the hands in screen coordinates were measured. With the relative

TABLE 2
WORD ACCURACY OF DESK-BASED SYSTEM

experiment training set Independent test
set

all features 94.1 percent 91.9 percent
relative features 89.6 percent 87.2 percent

all features &
unrestricted

grammar

81.0 percent
(87 percent)

(D = 31, S = 287,
I = 137, N = 2390)

74.5 percent
(83 percent)

(D = 3, S = 76,
I = 41, N = 470)

Word accuracies; percent correct in parentheses where different. The first test
uses the strong part-of-speech grammar and all feature elements. The second test
removes absolute position from the feature vector. The last test again uses all
features but only requires that the hypothesized output be composed of words
from the lexicon. Any word can occur at any time and any number of times.
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feature set, the absolute positions of the hands are removed from
the feature vector. While this change causes the error rate to in-
crease slightly, it demonstrates the feasibility of allowing the sub-
ject to vary his location in the room while signing, possibly re-
moving a constraint from the system.

The error rates of the “unrestricted” experiment better indicate
where problems may occur when extending the system. Without
the grammar, signs with repetitive or long gestures were often
inserted twice for each actual occurrence. In fact, insertions caused
more errors than substitutions. Thus, the sign “shoes” might be
recognized as “shoes shoes,” which is a viable hypothesis without
a language model. However, a practical solution to this problem is
to use context training and a statistical grammar.

5 THE FIRST PERSON VIEW: A WEARABLE-BASED
RECOGNIZER

For the second experiment, the same 500 sentences were collected
by a different subject. Sentences were resigned whenever a mistake
was made. The full 500 sentence database is available from
anonymous ftp at whitechapel.media.mit.edu under pub/asl. The subject
took care to look forward while signing so as not to confound the
tracking with head rotation, though variations can be seen. Often,
several frames at the beginning and ending of a sentence’s data
contain the hands at a resting position. To take this in account,
another token, “silence” (in deference to the speech convention),
was added to the lexicon. While this “sign” is trained with the rest,
it is not included when calculating the accuracy measurement.

The resulting word accuracies from the experiment are listed in
Table 3. In this experiment, 400 sentences were used for training, and
an independent 100 sentences were used for testing. A new gram-
mar was added for this experiment. This grammar simply restricts
the recognizer to five word sentences without regard to part of
speech. Thus, the percent correct words expected by chance using
this “five-word” grammar would be 2.5 percent. Deletions and inser-
tions are possible with this grammar since a repeated word can be
thought of as a deletion and an insertion instead of two substitutions.

Interestingly, for the part-of-speech, five-word, and unrestricted
tests, the accuracies are essentially the same, suggesting that all the
signs in the lexicon can be distinguished from each other using this
feature set and method. As in the previous experiment, repeated
words represent 25 percent of the errors. In fact, if a simple repeated
word filter is applied post process to the recognition, the unrestricted
grammar test accuracy becomes 97.6 percent, almost exactly that of the
most restrictive grammar! Looking carefully at the details of the part-
of-speech and five-word grammar tests indicate that the same begin-
ning and ending pronoun restriction may have hurt the perform-
ance of the part-of-speech grammar! Thus, the strong grammars are

superfluous for this task. In addition, the close accuracies between
fair-test and test-on-training cases indicate that the HMMs training
converged and generalized extremely well for the task.

The main result is the high accuracies themselves, which indi-
cate that harder tasks should be attempted. However, why is the
wearable system so much more accurate than the desk system?
There are several possible factors. First, the wearable system has
less occlusion problems, both with the face and between the hands.
Second, the wearable data set did not have the problem with body
rotation that the first data set experienced. Third, each data set was
created and verified by separate subjects, with successively better
data recording methods. Controlling for these various factors re-
quires a new experiment, described in the next section.

6 DISCUSSION AND FUTURE WORK

We have shown a high-accuracy computer vision-based method of
recognizing sentence-level American Sign Language selected from
a 40-word lexicon. The first experiment shows how the system can
be used to communicate with a desk-based computer. The second
experiment demonstrates how a wearable computer might use this
method as part of an ASL to English translator. Both experiments
argue that HMMs will be a powerful method for sign language
recognition, much as they have been for speech and handwriting
recognition. In addition, the experiments suggest that the first
person view provides a valid perspective for creating a wearable
ASL translator.

While it can be argued that sign evolved to have maximum in-
telligibility from a frontal view, further thought reveals that sign
also may have to be distinguishable by the signer himself, both for
learning and to provide control feedback. To determine which
view is superior for recognition, we have begun a new experiment.
Native signers will be given a task to complete. The task will be
designed to encourage a small vocabulary (e.g., a few hundred
words) and to encourage natural sign. Four views of the signers
will be recorded simulaneously: a stereo pair from the front, a
view from the side, and the wearable computer view. Thus, both
3D and 2D tracking from various views can be compared directly.

Head motion and facial gestures also have roles in sign which
the wearable system would seem to have trouble addressing. In
fact, uncompensated head rotation would significantly impair the
current system. However, as shown by the effects in the first ex-
periment, body/head rotation is an issue from either viewpoint.
Simple fiducials, such as a belt buckle or lettering on a t-shirt may
be used to compensate tracking or even provide additional fea-
tures. Another option for the wearable system is to add inertial
sensors to compensate for head motion. In addition, EMG’s may
be placed in the cap’s head band along the forehead to analyze
eyebrow motion as has been discussed by Picard [9]. In this way,
facial gesture information may be recovered.

As the system grows in lexicon size, finger and palm tracking
information may be added. This may be as simple as counting
how many fingers are visible along the contour of the hand and
whether the palm is facing up or down. In addition, tri-sign con-
text models and statistical grammars may be added which may
reduce error up to a factor of eight if speech and handwriting
trends hold true for sign [16].

These improvements do not address user independence. Just as
in speech, making a system which can understand different sub-
jects with their own variations of language involves collecting data
from many subjects. Until such a system is tried, it is hard to esti-
mate the number of subjects and the amount of data that would
comprise a suitable training database. Independent recognition
often places new requirements on the feature set as well. While the
modifications mentioned above may be initially sufficient, the
development process is highly empirical.

TABLE 3
WORD ACCURACY OF WEARABLE COMPUTER SYSTEM

Grammar training set independent
test set

part-of-speech 99.3 percent 97.8 percent
5-word sentence 98.2 percent

(98.4 percent)
(D = 5, S = 36,
I = 5, N = 2500)

97.8 percent

unrestricted 96.4 percent
(97.8 percent)

(D = 24, S = 32,
I = 35, N = 2500)

96.8 percent
(98.0 percent)
(D = 4, S = 6,
I = 6, N = 500)

Word accuracies; percent correct in parentheses where different. The
five-word grammar limits the recognizer output to five words se-
lected from the vocabulary. The other grammars are as before.
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Similarly, we have not yet addressed the problem of finger
spelling. Changes to the feature vector to address finger informa-
tion are vital, but adjusting the context modeling is also of impor-
tance. With finger spelling, a closer parallel can be made to speech
recognition. Tri-sign context occurs at the subword level while
grammar modeling occurs at the word level. However, this is at
odds with context across word signs. Can tri-sign context be used
across finger spelling and signing? Is it beneficial to switch to a
separate mode for finger spelling recognition? Can natural lan-
guage techniques be applied, and if so, can they also be used to
address the spatial positioning issues in ASL? The answers to these
questions may be key to creating an unconstrained sign language
recognition system.
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